Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Unstructured-mesh simulation of sodium-water reaction in tube bundle system by SERAPHIM code

Uchibori, Akihiro; Shiina, Yoshimi*; Watanabe, Akira*; Takata, Takashi*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 12 Pages, 2022/03

An unstructured mesh-based analysis method has been integrated into the sodium-water reaction analysis code, SERAPHIM, in our recent studies. In this study, numerical analysis of an experiment on sodium-water reaction in a tube bundle domain was performed to investigate the effect of the unstructured mesh. The unrealistic behavior appeared in the coarse structured mesh was improved by the unstructured mesh. The numerical result in the case of the unstructured mesh reproduced the peak value of the temperature in the reacting flow.

Journal Articles

Application of unstructured mesh-based numerical method to sodium-water reaction phenomenon analysis code SERAPHIM

Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki

Nihon Kikai Gakkai Rombunshu (Internet), 84(859), p.17-00394_1 - 17-00394_6, 2018/03

For assessment of the wastage environment under tube failure accident in a steam generator of sodium-cooled fast reactors, a mechanistic computer code called SERAPHIM calculating compressible multicomponent multiphase flow with sodium-water chemical reaction has been developed. The original SERAPHIM code is based on the finite difference method. In this study, unstructured mesh-based numerical method was developed and introduced into the SERAPHIM code to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Validity of the unstructured mesh-based SERAPHIM code was investigated through the analysis of an underexpanded jet experiment. The calculated pressure profile showed good agreement with the experimental data. Numerical analysis of water vapor discharging into liquid sodium was also performed. It was demonstrated that the proposed numerical method could be applicable to evaluation of the sodium-water reaction phenomenon.

Journal Articles

Development of unstructured mesh generator on parallel computers

Muramatsu, Kazuhiro; Shimada, Akio*; Murakami, Hiroyuki*; Higashida, Akihiro*; Wakatsuki, Shigeto*

Proceedings of 4th International Conference on Supercomputing in Nuclear Applications (SNA 2000) (CD-ROM), 10 Pages, 2000/09

no abstracts in English

Journal Articles

Development of unstructured mesh generator on parallel computers

Muramatsu, Kazuhiro; Shimada, Akio*; Murakami, Hiroyuki*; Higashida, Akihiro*; Wakatsuki, Shigeto*

Keisan Kogaku Koenkai Rombunshu, p.353 - 356, 2000/05

no abstracts in English

Oral presentation

Application of unstructured mesh-based numerical method to sodium-water reaction phenomenon analysis code SERAPHIM

Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki

no journal, , 

For assessment of the wastage environment under tube failure accident in a steam generator of sodium-cooled fast reactors, a mechanistic computer code called SERAPHIM calculating compressible multicomponent multiphase flow with sodium-water chemical reaction has been developed. The original SERAPHIM code is based on the finite difference method. In this study, unstructured mesh-based numerical method was developed and introduced into the SERAPHIM code to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Validity of the unstructured mesh-based SERAPHIM code was investigated through the analysis of an underexpanded jet experiment. The calculated pressure profile showed good agreement with the experimental data. Numerical analysis of water vapor discharging into liquid sodium was also performed. It was demonstrated that the proposed numerical method could be applicable to evaluation of the sodium-water reaction phenomenon.

Oral presentation

Application of unstructured-mesh sodium-water reaction analysis code SERAPHIM for tube bundle system

Uchibori, Akihiro; Shiina, Yoshimi*; Watanabe, Akira*; Takata, Takashi

no journal, , 

A computational fluid dynamics code SERAPHIM for a sodium-water reaction phenomenon has been developed. An unstructured mesh-based analysis method has been integrated into this code for evaluation in a complex-shaped domain including multiple heat transfer tubes. In this study, a numerical analysis of an experiment on sodium-water reaction in a tube bundle domain was performed to investigate applicability of the unstructured mesh-based SERAPHIM code. The formulated high-temperature region and its temperature level agreed with an experimental result.

Oral presentation

Development of unstructured-mesh sodium-water reaction analysis code, SERAPHIM; Effect of unstructured mesh and benchmark analysis

Uchibori, Akihiro; Shiina, Yoshimi*; Watanabe, Akira*; Takata, Takashi*

no journal, , 

A computational fluid dynamics code, SERAPHIM, for sodium-water reaction has been developed. An unstructured mesh-based analysis method was integrated into this code for a complex-shaped domain including multiple heat transfer tubes. In this study, both structured- and unstructured-mesh analyses of the experiment on sodium-water reaction in a tube bundle domain was performed to investigate. The analyses showed that non-physical flow behavior in the case of the coarse structured mesh was improved by the unstructured mesh.

7 (Records 1-7 displayed on this page)
  • 1